

Journal of Organometallic Chemistry 501 (1995) 327-332

Zur Chemie des Tris(trimethylstannyl) amins. Die Kristallstrukturen von $[Me_3In-N(SnMe_3)_3]$ und $[RCIIn-N(SnMe_3)_2]_2$ mit R = Methyl und Ethyl *

Ralf Hillwig, Klaus Harms, Kurt Dehnicke *

Fachbereich Chemie der Universität Marburg, Hans-Meerwein-Straße, D-35032 Marburg, Deutschland

Eingegangen den 2 Mai 1995

Abstract

The trimethylmetals MMe₃ of Al, Ga, and In react with tris(trimethylstannyl)amine in diethyl ether, forming the donor-acceptor complexes $[Me_3M-N(SnMe_3)_3]$, which are characterized by IR spectroscopy. According to the crystal structure analysis of the indium compound the N atom is coordinated by the three Sn atoms and by the indium atom in a distorted tetrahedral fashion. The bond lengths are Sn-N 210.2 pm and In-N 239 pm. N(SnMe_3)₃ reacts with R₂InCl (R = Me, Et) under cleavage of SnMe₄ and formation of the centrosymmetric dimeric complexes [RClIn-N(SnMe_3)₂]₂ with In-N distances of 219.5 pm.

Zusammenfassung

Die Trimethylmetalle MMe₃ von Al, Ga und In reagieren mit Tris(trimethylstannyl)amin in Diethylether unter Bidung der Donor-Akzeptorkomplexe [Me₃M-N(SnMe₃)₃], die IR-spektroskopisch charakterisiert werden. Nach der Kristallstrukturanalyse der Indiumverbindung ist das N-Atom verzerrt tetraedrisch von den drei Sn-Atomen und dem Indium-Atom koordiniert mit Bindungslängen Sn-N von 210.2 pm und In-N von 239 pm. Mit R₂InCl (R = Mc, Et) reagiert N(SnMe₃)₃ unter Abspaltung von SnMe₄ und Bildung der zentrosymmetrischen dimeren Komplexe [RClIn-N(SnMe₃)₂]₂ mit In-N-Abständen von 219.5 pm.

Keywords: Reaction of Tris(trimethylstannyl)amine; Synthesis; IR spectrum; Crystal structure

1. Einleitung

Trimethvlsilvl-substituierte Amide. Imide und Nitride sind seit langem erfolgreich erprobte Reagentien zur Synthese von zahlreichen Derivaten entsprechend substituierter Haupt- und Nebengruppenelemente [1,2]. Demgegenüber haben die meist reaktionfähigeren Trimethylstannyl-Stickstoffverbindungen erst in den letzten Jahre größere Bedeutung erlangt. So reagiert zum Beispiel N(SnMe₃)₃ mit dem relativ reaktionsträgen Me₂SnCl₂ bereits bei 0°C unter Bildung von [ClMe₂Sn]₃N [3], während mit Cp * TaCl₄ das cyclische Nitridoderivat [Cp * TaNCl]₃ entsteht [4]. Man kann annehmen, daß bei den Substitutionsreaktionen des Tris(trimethylstannyl)amins mit Lewis-sauren Reaktionspartnern zunächst Donor-Akzeptorkomplexe gebildet werden. die in einem zweiten Schritt unter Substitution weiterreagieren. Dies wird auch anhand von Reaktionen des Tris(trimethylstannyl)amins vor allem mit Lewisaciden Bor- und Phosphorverbindungen nahegelegt [5].

Wir beschreiben in dieser Arbeit Donor-Akzeptor-Komplexe der Trimethylmetalle von Aluminium, Gallium und Indium mit Tris(trimethylstannyl)amin und zwei Substitutionsprodukte mit Dialkylindiumchlorid.

2. Ergebnisse

Tris(trimethylstannyl)amin, das im festen Zustand nach dem IR-Spektrum pyramidal ist [6] und nach Elektronenbeugungsexperimenten in der Gasphase planare Struktur hat [7], reagiert mit den Diethyletheraten der

 ^{*} Herrn Prof. H. Schumann zum 60. Geburtstag gewidmet.
 ^{*} Corresponding author.

1.3.0

Trimethylmetalle MMe_3 (M = Al, Ga, In) in Diethylether unter Bildung der Donor-Akzeptorkomplexe **1a-1c**:

Die Komplexe bilden weiße, feuchtigkeits- und sauerstoffempfindliche Kristallpulver, die sich etwas in Diethylether lösen. Einkristalle lassen sich durch langsames Abkühlen der gesättigten Lösungen erhalten. Ihre Thermolyse im Vakuum, die wir bis 350° C verfolgt haben, verläuft uneinheitlich, hauptsächlich unter Abspaltung von SnMe₄, jedoch haben wir bis jetzt keine reinen Nitridphasen MN erhalten können.

Tabelle 1 enthält die Bandenmaxima der IR-Spektren von **1a–1c** im Bereich von 1200 bis 100 cm⁻¹ mit den Zuordnungsvorschlägen. Diese stützen sich auf den Vergleich mit den IR-Spektren vor allem der Trimethylamin-Komplexe Me_3M-NMe_3 [8,9], sowie mit dem IR-Spektrum von N(SnMe_3)₃ [6]. Es fällt auf, daß das IR-Spektrum von 1a weniger Banden enthält als die von 1b und 1c, was ein Hinweis auf eine höhere Symmetrie der Aluminiumverbindung sein kann. Die Banden, die von den inneren Schwingungen des -N(SnMe₂)₂-Fragments herrühren, sind in allen Komplexen nahezu lagekonstant. Einen deutlichen Frequenzgang weist naturgemäß die M-N-Valenzschwingungsbande auf, die sich von 303 cm⁻¹ in **1a** über 289 cm⁻¹ in 1b nach 238 cm^{-1} in 1c verschiebt. In den Spektren der Addukte Me₃M-NMe₃ wird diese Bande durchweg kürzerwellig zugeordnet, z.B. mit 460 cm⁻¹ im Indiumkomplex [9], doch müssen in den Stannylkomplexen die höheren Schwingungsmassen berücksichtigt werden.

Die Reaktion von Tris(trimethylstannyl)amin mit den Diorganoindiumchloriden R_2 InCl ($R = CH_3$, Et) verläuft in Diethylether bei 20°C im Gegensatz zu Reaktion (1) unter Abspaltung von Zinntetraalkyl und Bildung der dimeren Substitutionsprodukte **2a** ($R = CH_3$) und **2b** ($R = C_2H_5$):

$$[\mathbf{R}_{2} \mathrm{InCl}]_{2} + 2\mathrm{N}(\mathrm{SnMe}_{3})_{3}$$

$$\longrightarrow [\mathrm{RClIn} - \mathrm{N}(\mathrm{SnMe}_{3})_{2}]_{2} + 2\mathrm{RSnMe}_{3} \qquad (2)$$

Gleichwohl nehmen wir für den Ablauf dieser Reaktion die primäre Bildung von Donor-Akzeptorkomplexen an, die aber in diesen Fällen nicht stabil sind. Die Komplexe **2a** und **2b** haben eine deutlich geringere Löslichkeit in Diethylether als die Addukte **1a-1c**, so daß die Hauptmenge als weiße, feuchtigkeits- und sauerstoffempfindliche Niederschläge isoliert werden können. Abkühlen gesättigter Lösungen in Diethylether führt zu farblosen Einkristallen.

In den IR-Spektren sind die Frequenzlagen der

 $N(SnMe_3)_2$ -Einheiten ähnlich denen der Spektren von **1a-1c**. Die In-Cl-Valenzschwingung finden wir im Spektrum von **2a** als mittelstarke Bande bei 291 cm⁻¹, in dem von **2b** bei 287 cm⁻¹, was den Erwartungen für terminale In-Cl-Bindungen entspricht [8,9]. Vollständige IR-Spektren siehe Lit. [10].

3. Kristallstrukturen

Tabelle 2 enthält die kristallographischen Daten und Angaben zu den Strukturlösungen, die Tabellen 3 und 4 die Bindungslängen- und winkel, die Tabellen 5 bis 7 die Atomkoordinaten. Weitere Einzelheiten zu den Kristallstrukturuntersuchungen können beim Fachinformationszentrum Karlsruhe, D-76344 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD-58954 angefordert werden.

3.1. $[Me_{3}In - N(SnMe_{3})_{3}]$ (1c)

1c hat die in Fig. 1 wiedergegebene monomere Molekülstruktur, in der das N-Atom verzerrt tetraedrisch von den drei Zinnatomen und dem Indiumatom umgeben ist. Die Position des Indiumatoms läßt sich trotz des praktisch gleichen Streuvermögens von In und Sn zweifelsfrei anhand der relativ langen In-N-Bindung von 239 pm festlegen. Demgegenüber sind die Sn-N-Bindungen mit 210.2 pm deutlich kürzer. Wie

Tabelle 1

IR-Spektren der Tris (trimethylstannyl) amin-Komplexe $[Me_3M-N(SnMe_3)_3]$ mit M = Al (1a), Ga (1b) und In (1c)

1a		1b		1c		Zuordnung
cm ⁻¹	Int. ^a	$\overline{\mathrm{cm}^{-1}}$	Int.	cm^{-1}	Int.	
146	m	141	sst	143	st	δSnC ₃
222	m	205	m	135	Sch	ρMC_3
235	Sch	228	Sch			-
303	m	289	st	238	m	ν M–N
397	m-st	397	m, br	385	m, br	δNSnC
		421	Sch	433	SS	
				451	st	$\nu_{\rm as} {\rm InC}_3$
				461	Sch	
475	m					δAlCl ₃
		504	SS	507	m	$\nu_{\rm s} {\rm SnC}_3$
527	st	526	sst	528	sst	$\nu_{\rm as} {\rm SnC}_3$
		571	s-m			$v_{as}GaC_3$
				570	s	
		622	s-m	616	SS	
(733)		651	m	599	S	$\rho CH_3(M)$
		674	SS	679	m	
733	sst	734	sst	732	sst	$\nu_{\rm as} \rm NSn_3$
766	sst	768	sst	766	sst	$\rho CH_3(Sn)$
				975	SS	
		1043	SS	1027	s	
1116	S	1116	SS	1123	S	
				1155	S	δCH3
1189	m	1197	m	1192	m	

^a Intensitäten: sst = sehr stark, st = stark, m = mittel, s = schwach, ss = sehr schwach, Sch = Schulter, br = breit.

Tabelle 2 Kristallographische Daten und Angaben zu den Strukturlösungen

	1c	2a	2b
Gitterkonstanten	a = b =	a = 1010.4(2),	a = 1126.2(1),
	c = 1305.7(1) pm	b = 976.9(2),	b = 993.1(2),
		c = 1560.3(4) pm	$c = 1460.3(1) \mathrm{pm}$
	0	$\beta = 94.28(2)^{\circ}$	$\beta = 94.71(1)^{\circ}$
Zellvolumen	2226.0(3) Å ³	1535.8(6) Å ³	1627.7(4) Å ³
Zahl der Formeleinheiten pro Zelle	4	2	2
Dichte (berechnet)	1.985 g cm^{-3}	2.192 g cm^{-3}	2.126 g cm^{-3}
Kristallsystem, Raumgruppe	kubisch, $P2_13$	monoklin, $P2_1/n$	monoklin, $P2_1/n$
Meßgerät	Enraf-Nonius CAD4	Siemens P4	Enraf-Nonius CAD4
Strahlung	Μο-Κα	Μο-Κα	Μο-Κ α
Meßtemperatur	213 K	223 K	193 K
Zahl der Reflexe zur	25	25	25
Gitterkonstantenberechnung			
Meßbereich, Abtastungsmodus	$\theta = 2.7 - 22.0^{\circ},$	$\theta = 2.3 - 30.0^{\circ},$	$\theta = 2.5 - 26.5^{\circ},$
	w-scans	w-scans	ω-scans
Zahl der gemessenen Reflexe	1583	5268	3525
Zahl der unabhängigen Reflexe	$533 [R_{int} = 0.0758]$	$4160 [R_{int} = 0.0304]$	$3352 [R_{int} = 0.0293]$
Zahl der beobachteten Reflexe	497 mit $I > 2\sigma(I)$	3534 mit $I > 2\sigma(I)$	3185 mit $I > 2\sigma(I)$
Korrekturen	Lorentz- und Polari-	Lorentz- und Polari-	Lorentz- und Polari-
	sationsfaktor, semi-	sationsfaktor,	sationsfaktor, semi-
	empirische Absorp-	empirische Absorp-	empirische Absorp-
	tionskorrektur	tionskorrektur	tionskorrektur
	μ (Mo-K α) = 43.38 cm ⁻¹	μ (Mo-K α) = 48.55 cm ⁻¹	μ (Mo-K α) = 45.84 cm ⁻¹
Strukturaufklärung	Patterson-Methoden	Direkte Methoden	Patterson-Methoden
Verfeinerung	Vollmatrix-Ver-	Vollmatrix-Ver-	Vollmatrix-Ver-
0	feinerung an F^2	feinerung an F^2	feinerung an F^2
Anzahl der Parameter	57	117	126
Restriktionen	H-Atomlagen isotrop	H-Atomlagen isotrop	H-Atomlagen isotrop
	und in berechneten	und in berechneten	und in berechneten
	Positionen verfeinert	Positionen verfeinert	Positionen verfeinert
Verwendete Rechenprogramme	SHELXS-86 [21]	SHELXS-86 [21]	SHELXS-86 [21]
	SHELXL-93 [21]	SHELXL-93 [21]	SHELXL-93 [21]
Atomformfaktoren, $\Delta f'$, $\Delta f''$	Internationale	Internationale	Internationale
	Tabellen, Vol.C	Tabellen, Vol.C	Tabellen, Vol.C
$R = \Sigma F_{\alpha} - F_{\alpha} / \Sigma F_{\alpha} $	0.053	0.038	0.033
wR_2 (alle Daten)	0.144	0.109	0.097
wR_2 (alle Daten)	0.144	0.109	0.097

die Darstellung des Moleküls 1c in der Newman-Projektion zeigt, befinden sich die Methylgruppen des Me₃In-Fragments nicht in der idealen Lückenposition zu dem NSn₃-Gerüst, wofür vermutlich Packungsgründe maßgeblich sind:

In Lösung liegt wahrscheinlich die höher symmetrische Molekülstruktur mit C_3 -Symmetrie vor, da im ¹¹⁹Sn-NMR-Spektrum in C_6D_6 -Lösung nur ein Signal bei 90.31 ppm beobachtet wird.

Die In-N-Bindungslänge in 1c ist mit 239 pm vergleichbar mit den In-N-Abständen in dem zweikernigen

Tabelle 3 Ausgewählte Bindungslängen (pm) und -winkel (°) in $[Me_3In-N(SnMe_3)_3]$ (1c)

				_
In–N	239(3)	Sn(1)-C(1)	214(2)	_
In–C	220(2)	Sn(1)-C(2)	214(2)	
Sn-N	210,2(8)	Sn(1)-C(3)	213(2)	
C-In-C	113.7(5)	N-Sn(1)-C(1)	107.9(6)	
C–In–N	104.8(6)	N-Sn(1)-C(2)	110.5(8)	
In-N-Sn(1)	107.1(7)	N-Sn(1)-C(3)	109.6(9)	
In-N-Sn(1a)	107.2(7)	C(1)-Sn(1)-C(2)	111.1(8)	
In-N-Sn(1b)	107.1(7)	C(1) - Sn(1) - C(3)	108.8(9)	
Sn–N–Sn	111.7(6)	C(2) - Sn(1) - C(3)	108.9(10)	

Tabelle 4

Ausgewählte Bindungslängen (pm) und -winkel (°) in [CIRInN(Sn-Me₃)₂]₂ (R = Me, Et)

	$\frac{\left[\text{ClMeInN}(\text{SnMe}_3)_2\right]_2}{(2a)}$	$\frac{\left[\text{ClEtInN}(\text{SnMe}_3)_2\right]_2}{(2b)}$
$\overline{\ln(1)-N(1)}$	219.0(4)	219.5(4)
In(1)-N(1a)	219.6(4)	219.6(5)
In(1)-Cl(1)	242.6(2)	243.2(2)
In(1)-C(1)	214.0(6)	213.6(6)
C(1) - C(2)		148.1(10)
Sn(1) - N(1)	211.7(4)	213.5(4)
Sn(2) - N(1)	213.4(4)	210.7(4)
Sn(1)-C(2)	212.9(7)	214.0(7) [C(3)]
Sn(1)-C(3)	214.0(7)	213.4(7) [C(4)]
Sn(1)-C(4)	213.2(8)	212.0(6) [C(5)]
Sn(2)-C(5)	213.6(6)	213.6(7) [C(6)]
Sn(2)-C(6)	212.2(6)	212.7(8) [C(7)]
Sn(2) - C(7)	213.2(6)	213.1(8) [C(8)]
N(1)-In(1)-N(1a)	89.81(14)	89.9(2)
N(1)-In(1)-C(1)	128.3(2)	128.8(2)
N(1a) - In(1) - C(1)	122.9(3)	123.8(2)
N(1) - In(1) - Cl(1)	100.20(11)	100.37(12)
N(1a)-In(1)-Cl(1)	102,01(11)	101.99(12)
C(1) - In(1) - Cl(1)	108.9(3)	107.3(2)
ln(1)-N(1)-ln(1a)	90.19(14)	90.1(2)
In(1) - N(1) - Sn(1)	113.6(2)	115.8(2)
In(1) - N(1) - Sn(2)	117.1(2)	113.8(2)
In(1)-C(1)-C(2)		114.9(5)
Sn(1) - N(1) - Sn(2)	107.4(2)	107.9(2)
N(1)-Sn(1)-C(2)	114.4(2)	107.7(3) [C(3)]
N(1) - Sn(1) - C(3)	106.9(2)	107.7(2) [C(4)]
N(1)-Sn(1)-C(4)	108.6(3)	109.3(2) [C(5)]
N(1)-Sn(2)-C(5)	108.6(2)	107.3(3) [6(6)]
N(1) - Sn(2) - C(6)	110.3(2)	113.9(2) [C(7)]
N(1)-Sn(2)-C(7)	107.6(2)	109.5(3) [C(8)]
C(2) - Sn(1) - C(3)	103.3(4)	$110.5(3) [C(3) \cdots C(4)]$
C(2) - Sn(1) - C(4)	112.2(4)	$105.8(3) [C(3) \cdots C(5)]$
C(3) - Sn(1) - C(4)	111.3(3)	$115.6(3) [C(4) \cdots C(5)]$
C(5) - Sn(2) - C(6)	106.0(3)	$105.1(4) [C(6) \cdots C(7)]$
C(5) - Sn(2) - C(7)	110.0(3)	$110.7(4) [C(6) \cdots C(8)]$
C(6) - Sn(2) - C(7)	114.2(3)	$110.2(3) [C(7) \cdots C(8)]$

Trimethylindium-Komplex $[Me_3In-NHMe(CH_2)_2NH-Me-InMe_3]$ (236.9 pm [11]), während sie in dem sterisch stärker belasteten 2,2,6,6-Tetramethylpiperidin-Komplex $[Me_3In-NH(CMe_2CH_2)_2CH_2]$ mit 250.2 pm bereits deutlich länger ist [11]. Die Sn-N-Bindungs-

Tabelle 5 Atomkoordinaten (×10⁴) und äquivalente isotrope Temperaturfaktoren (Å² × 10³) für 1c bei - 60°C

Atom	x	у	z	U _{eq}
Sn(1)	7751(1)	1796(1)	1034(1)	23(1)
In(1)	6507(1)	1507(1)	3493(1)	28(1)
N(1)	7563(11)	2563(11)	2437(11)	15(6)
C(4)	7007(19)	-68(18)	3166(20)	39(6)
C(3)	8174(20)	2862(18)	- 120(17)	41(7)
C(2)	6355(17)	1058(18)	590(19)	38(6)
C(1)	8960(17)	707(17)	1214(16)	34(6)

 $U_{\rm eq}$ Werte sind definiert als ein Drittel der Spur des orthogonalen $U_{\rm ij}$ -Tensors.

Tabelle 6 Atomkoordinaten und äquivalente isotrope Temperaturfaktoren ($Å^2$) für 2a bei - 50°C

u 2a ber = 50 C				
Atom	x	у	z	U _{eq}
[n(1)	0.10840(3)	0.11283(3)	0.00936(2)	0.03191(11)
Sn(2)	-0.19521(3)	0.19834(3)	-0.12617(2)	0.03326(11)
Sn(1)	-0.20314(4)	0.20262(4)	0.09294(2)	0.04165(12)
CI(1)	0.1369(2)	0.1648(2)	0.16164(10)	0.0592(4)
N(1)	-0.1085(4)	0.1119(4)	-0.0095(2)	0.0299(7)
C(1)	0.2466(6)	0.2319(8)	-0.0567(6)	0.067(2)
C(2)	-0.2000(10)	0.0809(10)	0.2062(5)	0.079(3)
C(3)	-0.4100(6)	0.2157(10)	0.0529(5)	0.066(2)
C(4)	-0.1196(9)	0.4005(7)	0.1173(5)	0.070(2)
C(5)	-0.2336(8)	0.4102(7)	-0.1049(5)	0.058(2)
C(6)	-0.0584(6)	0.1916(8)	-0.2229(4)	0.054(2)
C(7)	-0.3767(6)	0.0928(7)	- 0.1587(4)	0.0499(13)

 $U_{\rm eq}$ Werte sind definiert als ein Drittel der Spur des orthogonalen $U_{\rm ij}$ -Tensors.

abstände in 1c werden im Vergleich zur Gasphasen-Struktur von N(SnMe₃)₃ [7] erwartungsgemäß etwas verlängert, und zwar von 204.1 pm nach 210.2 pm. Damit liegen sie außerhalb der Sn–N-Abstände von Komplexen, für die Sn–N- π -Bindungsanteile diskutiert werden, wie in [ClMe₂Sn]₃N mit 199 pm [3]. Dagegen sind die Sn–C-Bindungen mit 212 pm in 1c geringfügig kürzer als in N(SnMe₃)₃ mit 216.4 pm [7].

3.2. $[ClRInN(SnMe_3)_2]_2$ mit $R = CH_3$ (2a) und $R = C_2H_5$ (2b)

Die Komplexe **2a** und **2b** haben die in den Figuren 2 und 3 wiedergegebenen dimeren zentrosymmetrischen Molekülstrukturen, in denen die Indiumatome nahezu quadratisch über die N-Atome der $N(SnMe_3)_2$ -Reste verknüpft sind. Der Ersatz der Methylgruppe in **2a** durch die Ethylgruppe in **2b** hat nur einen marginalen Einfluß auf die Bindungsparameter (siehe Tab. 4). Die

Tabelle 7 Atomkoordinaten und äquivalente isotrope Temperaturfaktoren (Å²) für **2b** bei -80° C

Atom	x	у	z	U _{eq}
In(1)	0.59571(3)	0.11311(4)	0.00676(2)	0.02049(13)
Sn(1)	0.30982(3)	0.19890(4)	-0.11813(3)	0.02514(13)
Sn(2)	0.32897(4)	0.18816(4)	0.11739(3)	0.02961(14)
Cl(1)	0.64198(14)	0.1537(2)	0.17003(10)	0.0383(4)
N(1)	0.4004(4)	0.1077(5)	0.0002(3)	0.0206(9)
C(1)	0.7084(6)	0.2411(7)	-0.0656(5)	0.042(2)
C(2)	0.8336(7)	0.2481(12)	-0.0259(7)	0.075(3)
C(3)	0.2794(8)	0.4057(8)	-0.0860(6)	0.052(2)
C(4)	0.1447(6)	0.0957(8)	-0.1465(5)	0.0383(15)
C(5)	0.4239(6)	0.2008(8)	-0.2266(5)	0.041(2)
C(6)	0.1402(6)	0.1989(11)	0.0883(6)	0.062(3)
C(7)	0.3552(8)	0.0641(9)	0.2360(5)	0.052(2)
C(8)	0.4018(8)	0.3833(8)	0.1453(6)	0.050(2)

 $U_{\rm eq}$ -Werte sind definiert als ein Drittel der Spur des orthogonalen U_{ij} -Tensors.

Fig. 1. Ansicht der Molekülstruktur von [Me₃In-N(SnMe₃)₃] (1c).

In-N-Abstände der In₂N₂-Viererringe sind nun mit 219.4 pm (Mittelwert) naturgemäß deutlich kürzer als in dem Donor-Akzeptor-Komplex 1c. Sie sind auch kürzer als sie üblicherweise in In₂N₂-Viererring-Strukturen mit tetraedrisch koordinierten Ringatomen angetroffen werden [9]. Beispiele sind [ⁱPr₂InNH^tBu]₂ mit 223.1 pm [12], $[Me_2InNMe_2]_2$ mit 222.5 und 224.7 pm [13], $[Me_2InN(Me)Ph]_2$ mit 228.2 pm [14] und $[Me_2InN(SiMe_3)_2]_2$ mit 230.5 pm [15]. Kürzere In-N-Bindungslängen wie in 2a und 2b wurden vor allem in In₂N₂-Verbindungen mit sp²-hybridisierten N-Atomen beobachtet, wie die Beispiele $[Me_2InNCMe_2]_2$ mit Bindungslängen von 219.5 pm [16] und [Cl₂InNPPh₃]₂ mit 211.2 pm und 217.9 pm [17] zeigen. Recht kurze In-N-Bindungen mit 218.5 pm liegen allerdings auch in der Struktur von ['Pr(Cl)InN(H)'Bu]₂ vor, deren

Fig. 2. Ansicht der Molekülstruktur von [ClMeIn-N(SnMe₃)₂]₂ (2a).

Fig. 3. Ansicht der Molekülstruktur von [ClEtIn-N(SnMe₃)₂]₂ (2b).

 In_2N_2 -Viererring allerdings rautenförmig verzerrt ist [18].

4. Experimenteller Teil

Die Versuche erfordern Ausschluß von Feuchtigkeit und Luftsauerstoff; alle Handlungen wurden daher unter Argon ausgeführt, die verwendeten Lösungsmittel wurden entsprechend getrocknet und jeweils frisch destilliert. Tris-(trimethylstannyl)amin erhielten wir nach [19] durch Umsetzung von CISnMe₃ mit flüssigem Ammoniak in Gegenwart von Natriumamid. Die Alkylverbindungen MMe₃ (M = Al, Ga, In) und R₂InCl (R = Me, Et) wurden nach Standardreaktionen durch Grignardierung der Trichloride bzw. durch Komproportionierung aus Indiumtrimethyl und Indiumtrichlorid hergestellt [19,20].

Für die IR-Spektren stand das Bruker-Gerät IFS-88 zur Verfügung, CsI- und Polyethylenscheiben, Nujol-Verreibungen. Die NMR-Spektren wurden mit den Bruker-Geräten 300 (¹H, 300.133 MHz) und 400 (¹¹⁹Sn, 149.213 MHz) gemessen.

4.1. Tris(trimethylstannyl)amin-Trimethylaluminium, Me₃ Al–N(SnMe₃)₃

Zu einer Lösung von 0.94 g AlMe₃ (13.0 mmol) in 20 ml Diethylether tropft man bei 20°C langsam unter Rühren eine Lösung von 6.60 g N(SnMe₃)₃ (13.0 mmol) in 20 ml Diethylether. Man filtriert den weißen Niederschlag, wäscht mit *n*-Hexan und trocknet i.Vak. Ausbeute 3.2 g (43%). Farblose Einkristalle erhält man durch Ruhigstellen des Filtrats bei 7°C. Gef.: C, 24.95; H, 5.54; N, 2.43; Sn, 60.65; Al 4.57. Für C₁₂H₃₆NAlSn₃ (577.47) ber.: C, 24.96; H, 6.33; N, 2.43; Sn, 61.66; Al, 4.67%. ¹¹⁹Sn-NMR: 90.05 ppm (C₆D₆).

4.2. Tris(trimethylstannyl)amin-Trimethylgallium, **D** $Me_3Ga=N(SnMe_3)_3$

Man arbeitet wie oben beschrieben. Angewandte Mengen: 0.91 g GaMe₃ (8.0 mmol), 20 ml Diethylether, 4.05 g N(SnMe₃)₃ (8.0 mmol), 20 ml Diethylether. Ausbeute 1.54 g (31%). Einkristalle aus dem Filtrat bei 7 °C. Gef.: C, 23.20; H, 5.73; N, 1.80; Ga, 11.64. Für $C_{12}H_{36}NGaSn_3$ (620.21) ber.: C, 23.24; H, 5.85; N, 2.26; Ga, 11.24%. ¹H-NMR (C_6D_6) -0.13 ppm, s, 9H (-GaMe₃); 0.25 ppm, s, 27H (-N(SnMe₃)₃).

4.3. $Tris(trimethylstannyl)amin-Trimethylindium, Me_3In-N(SnMe_3)_3$

Man arbeitet wie oben beschrieben. Angewandte Mengen: 0.80 g $InMe_3$ (5.0 mmol), 15 ml Diethylether, 2.54 g N(SnMe_3)₃ (5.0 mmol), 15 ml Diethylether. Ausbeute 2.83 g (85%). Einkristalle aus dem Filtrat bei -20° C. Gef.: C, 20.85; H, 5.07; N, 2.08; Sn, 52.47. Für C₁₂H₃₆NInSn₃ (665.31) ber.: C, 21.66; H, 5.45; N, 2.10; Sn, 53.53%. ¹¹⁹Sn-NMR (C₆D₆) 90.31 ppm; ¹H-NMR (C₆D₆) 0 ppm, s, 9H (-InMe_3); 0.25 ppm, s, 27H (-N(SnMe_3)₃).

4.4. Bis(trimethylstannyl)amido-Methylindiumchlorid, $[MeClInN(SnMe_3)_2]_2$

Zu einer Lösung von 0.88 g Me₂InCl (4.9 mmol) in 20 ml Diethylether tropft man langsam bei 20°C unter Rühren eine Lösung von 2.47 g N(SnMe₃)₃ (4.9 mmol) in 20 ml Diethylether. Der farblose Niederschlag wird filtriert, mit *n*-Hexan gewaschen und i.Vak. getrocknet. Ausbeute 1.97 g (80%). Ruhigstellen des Filtrats bei 7°C führt zu farblosen Einkristallen. Gef.: C, 16.30; H, 4.10; N, 1.98; Cl, 8.10. Für C₇H₂₁ClNInSn₂ (505.92) ber.: C, 16.59; H, 4.18; N, 2.76; Cl, 6.99%. ¹H-NMR (CDCl₃/OEt₂) 0.60 ppm, s, 3H(-InMe); 0.17 ppm, s, 18H (-N(SnMe₃)₂).

4.5. Bis(trimethylstannyl)amido-Ethylindiumchlorid, $[EtClInN(SnMe_3)_2]_2$

Man arbeitet wie oben beschrieben. Angewandte Mengen: 1.10 g $\text{Et}_2 \text{InCl}$ (5.28 mmol), 15 ml Diethylether, 2.67 g N(SnMe₃)₃ (5.28 mmol), 15 ml Diethylether. Ausbeute 1.83 g (66%). Einkristalle aus dem Filtrat bei 20 °C. Gef.: C, 17.94; H, 3.53; N, 1.81; Sn, 45.40; Cl, 6.74. Für C₈H₂₃ClNInSn₂ (590.92) ber.: C, 18.44; H, 4.45; N, 2.69; Sn, 45.58; Cl, 6.81%.

Dank

Wir danken der Deutschen Forschungsgemeinschat und dem Fonds der Chemischen Industrie für großzügig Unterstützung.

Literatur

- Übersichten: M.F. Lappert, P.P. Power, A.R. Sanger und R.C Srivastava, Metal and Metalloid Amides, Wiley, New Yorl 1980.
- [2] W.A. Nugent and J.M. Mayer, *Metal-Ligand Multiple Bond*: John Wiley and Sons, New York, 1988.
- [3] C. Kober, J. Kroner und W. Storch, Angew. Chem., 105 (1993)
 1693; Angew. Chem. Int. Ed. Engl., 32 (1993) 1608.
- [4] H. Plenio, H.W. Roesky, M. Noltemeyer und G.M. Sheldrick Angew. Chem., 100 (1988) 1377; Angew. Chem. Int. Ed. Engl. 27 (1988) 1330.
- [5] W. Storch und H. Nöth, *Chem. Ber.*, 110 (1977) 1636; H. Nöth R. Staudigl und W. Storch, *Chem. Ber.*, 114 (1981) 3024; P. Lang, H. Nöth, P. Otto und W. Storch, *Chem. Ber.*, 118 (1985 86; H. Nöth, P. Otto und W. Storch, *Chem. Ber.*, 118 (1985 3020; W. Krüger und R. Schmutzler, *Inorg. Chem.*, 18 (1979 871.
- [6] R.E. Hesters und K. Jones, J. Chem. Soc. Chem. Commun. (1966) 317.
- [7] L.S. Khaikin, A.V. Belakov, G.S. Koptev, A.V. Golubinski, L.V. Vilkov, N.V. Girbasova, E.T. Bogoradovskij und V.S. Zavgorodnij, J. Mol. Struct., 66 (1980) 191.
- [8] J. Weidlein, U. Müller und K. Dehnicke, Schwingungs frequenzen I, G. Thieme, Stuttgart, New York, 1981.
- [9] J. Weidlein, Gmelin Handbook of Inorganic and Organometal lic Chemistry: Organoindium Compounds, Springer, Berlin, 8t edn., 1991.
- [10] R. Hillwig, Dissertation Universität Marburg, in Vorbereitung
- [11] D.C. Bradley, H. Dawes, D.M. Frigo, M.B. Hursthouse und E
- Hussain, J. Organomet. Chem., 325 (1987) 55.
- [12] B. Neumüller, Chem. Ber., 122 (1989) 2283.
- [13] K. Mertz, W. Schwarz, F. Zettler und H.-D. Hausen, Z. Natur forsch., 30b (1975) 159.
- [14] O.T. Beachley, Jr., C. Bueno, M.R. Churchill, R.B. Hallock un R.G. Simmons, *Inorg. Chem.*, 20 (1981) 2423.
- [15] K.A. Aitchison, J.D.J. Backer-Dirks, D.C. Bradley, M.M. Fak tor, D.M. Frigo, M.B. Hursthouse, B. Hussain und R.L. Short J. Organomet. Chem., 366 (1989) 11.
- [16] F. Weller und U. Müller, Chem. Ber., 112 (1979) 2039.
- [17] H.W. Roesky, U. Seseke, M. Noltemeyer und G.M. Sheldrick Z. Naturforsch., 43b (1988) 1130.
- [18] B. Neumüller, Z. Naturforsch., 45b (1990) 1559.
- [19] K. Sisido und S. Kozima, J. Org. Chem., 29 (1964) 907.
- [20] T. Maeda, H. Tada, K. Yasuda und R. Okawaru, J. Organome. Chem., 27 (1971) 13.
- [21] G.M. Sheldrick, SHELXS-86, SHELXL-93, Programme zur Ver feinerung von Kristallstrukturen, Göttingen, 1986; 1993.